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Abstract

Anew linear ideal-magnetohydrodynamics stability code for axisymmetric plasmas, AEGIS, is described. The AEGIS
code employs adaptive shooting in the radial direction and Fourier decomposition in the poloidal direction. The general
solution is a linear combination of the independent solutions of the Euler–Lagrange equations solved by the adaptive
shooting. A multiple-region matching technique is used to overcome the numerical difficulty associated with the stiff nat-
ure of the independent solutions. Benchmarks with other MHD codes show good agreement. Because it is adaptive, the
AEGIS code has very good resolution near the singular surfaces ofMHDmodes. AEGIS has the additional advantage of
allowing the investigation of modes with not only low mode numbers, but also intermediate to high mode numbers.
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1. Introduction

Successful magnetic confinement of a toroidal fusion plasma relies on the magnetohydrodynamic (MHD)
stability of the plasma. Due to the complexity of toroidal geometry, numerical computation of the MHD
instability modes in toroidal plasmas is indispensable for interpreting experimental observations and design-
ing new devices. During the last 30 years, several MHD stability codes have been developed, such as PEST,
ERATO, GATO, DCON, NOVA, KINX, MISHKA, etc. [1–11].
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The MHD eigenvalue-type codes – for example, PEST [1,2,6] and GATO [5] – usually employ the finite
element method with a fixed grid for solving the radial eigenvalue problem. As is well known, the ideal MHD
eigenvalue problem can be singular at mode rational surfaces in the case of marginal stability. To resolve this
singular feature, an adaptive grid mesh in the radial dimension is desirable. The DCON code [7] employs an
adaptive method; however, it uses the generalized Newcomb theorem [12] to determine stability of the inter-
nal modes and computes only the marginal stability of both internal and external MHD modes.

The current paper describes a newly developed adaptive eigenvalue shooting code for ideal MHD equa-
tions that can solve the finite frequency (or growth rate) eigenvalue problem. The finite frequency problem
needs to be addressed in incorporating rotational and kinetic effects and in studying the Alfvén modes.
Therefore, the numerical scheme presented in this article has the potential for being directly extended beyond
low-frequency ideal MHD computations. The new code is named AEGIS (Adaptive EiGenfunction Inde-
pendent Solution). The AEGIS code uses Fourier decomposition in the poloidal direction. To solve the ra-
dial eigenvalue problem, it constructs the general solution through a linear combination of the independent
solutions of the Euler–Lagrange equations. The eigenvalue problem is then formulated by this general solu-
tion being fitted to the boundary conditions at the magnetic axis and the plasma-vacuum interface. This for-
mulation is similar to that employed in the DCON code for marginal stability and in the ELITE code for
high-mode-number MHD modes [13–15]. The difference from DCON is that AEGIS addresses modes with
finite frequency or growth rate. The difference from ELITE is that AEGIS addresses both low- and interme-
diate-to-high-mode-number modes. To compute the eigenvalue problem with finite frequency (or growth
rate), the modes at the singular layers must to be resolved. This poses a difficulty in applying the method
based on decomposition in terms of the independent solutions. Although the MHD eigenmodes are well-
behaved, the independent solutions are generally very stiff because near marginal stability the MHD modes
are singular at the mode resonance surfaces, as well as at the magnetic axis. Hence, continuously shooting
from the magnetic axis to the plasma edge usually fails to obtain accurately the independent solutions that
extend across the whole plasma. The small solution of the Euler–Lagrange equation is often submerged in
the numerical noise of the large solution. To resolve this difficulty, the AEGIS code employs a multiple-
region matching technique. In this procedure, shooting in the radial dimension is performed in multiple
regions, and then the independent solutions obtained in the individual regions are matched to each other.
Note that the DCON code uses the Gaussian elimination technique to remove the large solution in order
to resolve the numerical difficulty due to singularity at resonance surfaces. We find that our numerical
scheme in AEGIS can effectively handle the ideal-MHD eigenvalue problem. It therefore opens the door
for the extension to kinetic MHD computations, which in general need to deal with the MHD large solution.

The paper is arranged as follows: In Section 2, the equilibrium calculation is described. In Section 3, the
numerical scheme for determining the independent solutions is detailed. The eigenvalue problem for deter-
mining the stability is then formulated with the use of these independent solutions. In Section 4, the numer-
ical results and the benchmarks with the GATO code are described. In the last section, the results are
discussed and conclusions are presented.
2. Equilibrium

In a toroidally symmetric configuration, the magnetic field ~B can be expressed as
~B ¼ v0r/�rwþ gðvÞr/; ð1Þ

where / is the axisymmetric toroidal angle, w labels the magnetic surface, v(w) denotes the poloidal mag-
netic flux, g(v) is the poloidal current flux and a prime denotes a derivative with respect to w. An overhead
arrow is used to indicate vectors in configuration space. The poloidal flux v is governed by the Grad-
Shafranov equation, with the pressure profile P(v) and poloidal current flux g(v) to be specified. The
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Grad-Shafranov equation usually needs to be solved numerically by means of an equilibrium code, for
example, TOQ [16]. The numerical equilibrium data computed by an equilibrium code become the input
to AEGIS. The data required by AEGIS are the profile functions for poloidal magnetic flux v(w), pressure
P(w) and poloidal current flux g(w) and the flux coordinates X(w, h) and Z(w, h) at the grid points. Here, X
and Z are Cartesian coordinates in the / = const plane and h is the poloidal coordinate (which, in the case
of TOQ, is the equal-arc-length poloidal coordinate).

As with most MHD codes, AEGIS performs re-gridding, both for the radial coordinate and the poloidal
angle. The re-gridding relies on spline interpolations of the equilibrium data. As proposed in the PEST1 code,
[1] the coordinate splines are established on a generalized polar coordinate system. During the re-gridding,
there is a choice with respect to various coordinate systems, such as equal-arc-length coordinates, the PEST
coordinate system [1] and the Hamada [17] coordinate system. The equal-arc-length and PEST coordinate
systems are shown in Figs. 1 and 2, respectively.

As described in Section 1, the independent solutions of the linear Euler–Lagrange equations are obtained
by shooting in multiple radial regions. As shown in Fig. 3, the radial grids are grouped region by region.
Each region usually contains a single mode resonance surface. Therefore, the number of regions depends on
the toroidal mode number n and the safety factor q profile. Additional regions can be added near the mag-
netic axis, depending on how stiff the shooting is in this area.
Fig. 1. The equal arc length coordinate system as read from the equilibrium code TOQ. The figure takes the ITER-like cross-section
parameters: elongation j = 1.8 and triangularity d = 0.5.



Fig. 2. The Fig. 1 equilibrium is regrided into the PEST coordinate system. Denser grids are placed at the MHD mode resonance
surfaces.
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As shown in Fig. 3, denser grids can be placed near the resonance surfaces, according to a polynomial-
type grid density distribution that can be selected. The GATO code uses a similar arrangement. In the AE-
GIS adaptive scheme, however, the shooting is not based on the specified radial grid. Instead, the grid is
merely used to impose the maximum step size in the adaptive shooting at various radii.

As will be described in the next section in more detail, the equilibrium quantities required for solving the
linear Euler–Lagrange equations are Fourier decomposed in the poloidal angle to form various equilibrium
matrices. In the equilibrium calculation, each element of the matrices is first computed at the radial grids
and then made to become a radially continuous function by spline interpolation.
3. Stability

Here we consider only a system in which a plasma torus is surrounded by a perfectly conducting wall.
The investigation of stability involves the minimization of the field and plasma energies, both in the plasma
and the vacuum regions. The minimization is realized through the solution of the corresponding Euler–
Lagrange equations with proper boundary conditions.



q

Fig. 3. An example of the shooting region setup together with the q profile. The highest vertical lines shows the mode resonance
surfaces (for n = 1 modes), the medium high vertical lines indicate the region separation surfaces and the short vertical lines specify the
radial grids, which imposes the maximum step size in the shooting.
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3.1. Plasma region

Although AEGIS is coded so as to be used with three coordinate systems – i.e., PEST, equal-arc-length
and Hamada coordinates – here, for simplicity, we describe only the procedure with PEST coordinates
(w, h, /). The Jacobian for PEST coordinates is given as follows [1]:
J ¼ 1

rw�rh � r/
¼ mX 2

2pR
¼ v0qX 2

g
; ð2Þ
where R is the major radius of the magnetic axis and m is a constant.
The plasma potential energy and kinetic energy can be expressed, respectively, as follows:
dW p ¼
1

2l0

Z
ds ~Qþ l0

ð~n � rwÞ~J �rw

jrwj2

�����
�����
2

� 2U j~n � rwj2
8<
:

9=
;; ð3Þ

dW k ¼ � 1

2

Z
dsqc2j~n?j2; ð4Þ
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where l0 represents the permeability of free space, ~n is the magnetic field line displacement vector,
~Q ¼ r�~n�~B, ~J is the equilibrium current density vector:
2U ¼ 2l0P
0jw þ

r2B2

jrwj2
þ v0g

X 2

o

oh
rrw � rh

jrwj2

 !
þ v0

rq0g

qX 2
;

r ¼ l0
~J �~B
B2

¼ � l0p
0g

B2v0
� g0

v0
;

jw ¼ l0P
0

B2
þ 1

2B2

oB2

ow
þ v0

2

2B4

rw � rh

X 2

oB2

oh
;

where c is the growth rate, q denotes the density and ds represents the differential volume element. Plasma
compressibility is neglected here, since that it contributes only to an apparent mass effect and does not affect
the MHD marginal stability criterion.

Since the effect of compressibility is excluded, the parallel component of~n can be ignored. Therefore, one
can decompose ~n as follows:
~n ¼ nwv0
~B�~s

B2
þ insv0

~B�rw

B2
; ð5Þ
where~s ¼ r/� qrh. We represent nw as follows:
ns ¼ 1

n
onw

ow
þ d.
The ballooning stream function type of representation in Eq. (5) simplifies the matrices to be constructed,
due to the minimization with respect to the effect of the compressional Alfvén mode. The n = 0 mode is
excluded from consideration in the current version of the AEGIS code. Furthermore, Fourier decomposi-
tion is performed for the linear perturbations:
nw ¼
Xmmax

m¼mmin

nwm expfiðmh� n/Þg; ð6Þ
where mmax and mmin are, respectively, the maximum and minimum sideband poloidal mode numbers to be
considered.

Inserting the expressions in Eqs. (5) and (6) into Eqs. (3) and (4), the potential and kinetic energies can be
formulated in terms of the matrices in Fourier space as follows:
2l0ðdW p þ dW kÞ ¼
Z

dw nwy nw
0y

dy
� � A P R

Py B Q

Ry Qy C

0
B@

1
CA nw

nw0

d

0
B@

1
CA. ð7Þ
Here, a dagger denotes the conjugate of a matrix and boldface denotes a vector in Fourier space, i.e., a
single-column matrix, for example,
nw ¼
nw1

..

.

nwM

0
BB@

1
CCA; d ¼

d1

..

.

dM

0
BB@

1
CCA;
where the poloidal Fourier components are numbered from mmin to mmax and the total number of Fourier
components under consideration is by M = mmax � mmin + 1. The equilibrium matrices are given as
follows:
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A P R

Py B Q

Ry Qy C

0
B@

1
CA ¼

Ap Pp Rp

Py
p Bp Qp

Ry
p Qy

p Cp

0
B@

1
CAþ qc2

C R �

Ry N K

� y Ky P

0
B@

1
CA.
Here, A;B, etc., are M · M matrices, defined as follows:
Ap ¼
v03q
g

Kkhjrhj2iKk þ
v0v002q
g

hjrwj2i þ gðqv0Þ02

v0q
Iþ l0p

0 qv
00

g
hX 2i

þ l0P
0 v

0q
g

oX 2

ow

� �
� g0q0v0I� i

v02v00q
g

ðhrw � rhiM�Mhrw � rhiÞ;

Bp ¼
v0g
n2q

KkKk;

Cp ¼
v0g
q

MMþ n2v03q
g

hjrwj2i;

Pp ¼ 0;

Qp ¼
v0g
nq

MKk;

Rp ¼ i
nv03q
g

hrw � rhiKk � l0nP
0 v

0q
g

hX 2i � nv02v00q
g

hjrwj2i � nv0qg0I;

C ¼ v03q
g

1

B2

� �
þ q2

X 2jrhj2

B2

* + !
;

N ¼ v03q
n2g

X 2jrwj2

B2

* +
;

P ¼ n2N;

R ¼ �i
v03q2

ng
X 2rw � rh

B2

� �
;

K ¼ nN;

� ¼ nR.
An angle bracket Æ� � �æ represents the associated Fourier matrix, whose elements are defined as follows:
h� � � imm0 ¼
1

2p

Z p

�p
dhð� � �Þ expfiðm0 � mÞhg;
and Kkmm0 ¼ ðm� nqÞImm0 , Mmm0 ¼ mImm0 , and Imm0 ¼ 1 for m = m 0, otherwise, Imm0 ¼ 0, where
m, m 0 = 1, 2, . . . ,M.

To suppress the compressional Alfvén contribution, the total plasma energy in Eq. (7) is varied with
respect to d�, yielding
Rynw þ Qyn0w þ Cd ¼ 0. ð8Þ

This is an algebraic equation and can be solved:
d ¼ �C�1Ry �C�1Qy� � nw

n0w

 !
. ð9Þ
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Inserting Eq. (9) back into Eq. (7), we reduce the plasma energy integral to
2l0ðdW p þ dW kÞ ¼
Z

dw nw0y nwy
� � F K

Ky G

� 	
nw0

nw

 !
; ð10Þ
where
F ¼ B� QC�1Qy;

Ky ¼ P�RC�1Qy;

G ¼ A�RC�1Ry.
We can further minimize the plasma energy by it varying Eq. (10) with respect to nw�, which gives rise to
the set of Euler–Lagrange equations
Fnw0 þKnw
� �0 �Kynw0 � Gnw ¼ 0.
As in the DCON code, this set of equations can be reformulated to a set of first-order differential equations
u0 ¼ Lpu; ð11Þ
where
u �
u1

u2

� 	
¼ nw

Fnw0 þKnw

 !
;

Lp ¼
�F�1K F�1

G�KyF�1K KyF�1

 !
.

Using integration by parts, one can show that for the solution of the set of Euler–Lagrange Eq. (11), the
energy integral in Eq. (10) only contributes at the plasma–vacuum interface wa
2l0ðdW p þ dW kÞ ¼ u
y
1u2
��
w¼wa

. ð12Þ
To solve Eq. (11), we first seek the complete set of independent solutions. We then use these independent
solutions to construct the eigensolution that satisfies the boundary conditions. The adaptive-mesh shooting
method is used to obtain the independent solutions. On account of the stiff nature of the equations caused
by the singular mode surfaces and the magnetic axis, we find that shooting continuously from the magnetic
axis to the plasma edge usually gives rise to solutions that are quite numerically polluted. Even if this dif-
ficulty could be coped with by a high-accuracy shooting routine, the resulting eigenmatrix can still be ill-
conditioned. To curb these problems, we employ a multiple-region shooting scheme. In this scheme, the
entire region from the plasma�s magnetic axis to the plasma edge is divided into L regions, separated by
w0, w1, . . . , wL ” wa, where w0 is at the vicinity of the magnetic axis. Each region usually contains only a
single mode resonance surface, except near the magnetic axis where more divided regions are usually
placed.

Note that Eq. (11) is a set of 2M first-order differential equations. Therefore, in general there are 2M
independent solutions for Eq. (11). In the first region, however, M boundary conditions can be imposed
at the magnetic axis and therefore the total number of independent solutions in the first region is reduced
to M. We define Ml = 2M for l > 1 and M1 =M. The kth independent solution in the lth region is denoted

by luk �
luk1
luk2

� 	
, where k = 1, 2, . . . ,Ml and l = 1, 2, . . . , L. The independent solutions are obtained by

shooting with independent initial conditions.
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The boundary conditions at the magnetic axis can be approximated by the cylinder solutions [7,10]
nwm / rm; ð13Þ
where the average minor radius r /
ffiffiffiffi
V

p
, with V the volume inside w0. Here, we note that w0 is adjusted such

that it is not a mode rational surface. In the first region the kth independent solution 1uk1 can be initiated as
1uk1mðw0Þ ¼ Imk; for m; k ¼ 1; 2; . . . ;M ð14Þ

and subsequently 1uk2m can be obtained by the use of Eq. (13) for nw0m =n

w
m. In the remaining regions the initial

conditions are simply
lukmðwl�1Þ ¼ Imk; for m; k ¼ 1; 2; . . . ; 2M and l ¼ 2; . . . ; L. ð15Þ

From the theory of differential equations, the general solution in the lth region can be represented as a

linear combination of the independent solutions
lu ¼
XMl

k¼1

luklck ¼ lU2M�Ml lc; for l ¼ 2; . . . ; L; ð16Þ
where lck are constants to be determined by the boundary conditions and matching conditions, with
lc ¼

lc1

..

.

lcM

0
BB@

1
CCA
being the matrix representation of these constants. The independent solutions in the lth shooting region are

used to construct the independent solution matrices lU2M�Ml �
lUM�Ml

1
lUM�Ml

2

� 	
¼ lu1; lu2; . . . ; luMlf g. The rank

of the matrix is explicitly specified by the right superscript, which indicates the number of rows times the
number of columns.
3.2. Vacuum region

The vacuum solution can usually be solved by theGreen�s functionmethod [18]. The finite element method
can be used to calculate the vacuum energy [19]. Here, we describe an alternative method based on the
shooting method for the independent solutions. Our numerical experience is that this method is consider-
ably faster than the Green�s function method. However, this new method applies only to the vacuum region
between the plasma and the surrounding wall. Shooting from the plasma or the wall to infinity is imprac-
tical. Although this shooting method can be coupled to various types of walls, here we consider only a per-
fectly conducting wall, for which we will benchmark the results with GATO, as described in the next
section.

To use the shooting method, we first need to set up grids in the vacuum region between the plasma and
the first wall, so that the metric parameters can be computed. Various types of grids can be used for this
purpose. Fig. 4 shows equal-distance grids both radially and poloidally in the conformal wall case. We
introduce the variables w and h for labeling the radial and poloidal grids, respectively. In this grid system,
therefore, we have the coordinates X(w, h) and Z(w, h). The toroidal axisymmetric angle / can be chosen as
the third coordinate. In this grid system one can then compute the Jacobian J ¼ 1=rw�rh � r/ and the
metric parameters |$w|2, $w Æ $h, |$h|2 and |$/|2.



Fig. 4. The vacuum grid setup with a conformal wall.
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The vacuum energy can be expressed in this coordinate system as follows:
2l0dW v ¼
Z

dsjruj2 ¼
Z

dwdh
ouy

ow
Jjrwj2 ou

ow
þ ouy

oh
Jrw � rh

ou
ow

þ ouy

ow
Jrw � rh

ou
oh

�

þ ouy

oh
Jjrhj2 ou

oh
þ uyn2Jjr/j2u

�
.

Introducing poloidal Fourier decomposition, we can reduce the expression for the vacuum energy integral
to
2l0dW v ¼
Z

dw ouy

ow uy
� � Fv Kv

Ky
v Gv

� 	 ou

ow

u

 !
; ð17Þ
where Fv ¼ hJjrwj2i;Kv ¼ ihJrw � rhiM; and Gv ¼ MhJjrhj2iMþ n2hJ=X 2i. Similar to the treat-
ment in the plasma region, variation of Eq. (17) with respect to u� yields the following set of Euler–
Lagrange equations:
u0 ¼ Lvuv; ð18Þ
v
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where
uv �
uv1

uv2

� 	
¼

u

Fvu
0 þKvu

� 	
;

Lv ¼
�F�1

v Kv F�1
v

Gv �Ky
vF

�1
v Kv Ky

vF
�1
v

 !
.

Here, the subscript v is introduced to denote quantities in the vacuum region. For the solutions of the set of
Euler–Lagrange Eq. (18), the energy integral in Eq. (17) can be reduced to a contribution at the plasma–
vacuum interface:
2l0dW v ¼ �u
y
v1uv2

��
w¼wa

; ð19Þ
where the boundary condition at a perfectly conducting wall has been used. At the position of the perfectly
conducting wall wb, the normal magnetic field should vanish ~B � rw ¼ 0. Noting that uv2m / d~B � rw, one
has
uv2ðwbÞ ¼ 0. ð20Þ

Eq. (20) can be used as the initial conditions for shooting from the wall to the plasma. Hence, there are only
M independent solutions ukv ðk ¼ 1; . . . ;M) for Eq. (18). These M independent solutions can be obtained by
means of the shooting method, with the following M set of initial conditions at the vacuum-wall interface:
ukvmðwbÞ ¼ Imk; for m ¼ 1; . . . ; 2M and k ¼ 1; . . . ;M . ð21Þ

Similar to the case in the plasma, the general solution in the vacuum region can be represented as a linear

combination of the independent solutions:
uv ¼
XM
k¼1

ukvcvk ¼ U2M�M
v cv; ð22Þ
where cvk are constants to be determined. The independent solutions are used to construct the independent

solution matrices U2M�M
v � UM�M

v1

UM�M
v2

� 	
¼ u1v; u

2
v; . . . ; u

M
v

 �
.

3.3. Eigenvalue problem

With the numerical shooting procedures described in the preceding two subsections, one can numerically
obtain the general solutions both in the plasma region and in the vacuum region. The boundary conditions
at the magnetic axis and at the perfectly conducting wall are imposed on these solutions. In this section, we
describe the procedure to match the solutions between the shooting regions in the plasma and at the plasma–
vacuum interface in order to derive the eigenmode equation. The matching procedure consists of two steps in
order to distinguish the internal unstable modes from the external ones.

In the first matching step, the independent solutions in various shooting regions in the plasma are
matched to each other, requiring up to be continuous, where the subscript p denotes quantities in the plasma
region. It is apparent that, after internal matching, only M overall independent solutions are left, which are

continuous in the plasma. We denote these M overall independent solutions as ukp ¼
ukp1
ukp2

� 	
with

k = 1, 2, . . . ,M and further require that
ukp1m ¼ Imk; for m; k ¼ 1; 2; . . . ;M . ð23Þ
The matching between the regions and the requirement in Eq. (23) can be jointly expressed by means of the
following matrix equation:
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Y

1CM�M

2C2M�M

..

.

L�1C2M�M

LC2M�M

0
BBBBBBB@

1
CCCCCCCA

¼

02M�M

02M�M

..

.

02M�M

IM�M

0
BBBBBBB@

1
CCCCCCCA
; ð24Þ
with the matrices lCMl�M ¼ flc1; . . . ; lcMg, for which the kth column (lck) corresponds to the kth component
of the boundary conditions given in Eq. (23) and
YðcÞ ¼

1U2M�M �I2M�2M 02M�2M � � � 02M�2M

02M�M 2U2M�2M �I2M�2M � � � 02M�2M

..

. ..
. ..

. ..
. ..

.

02M�M � � � 02M�2M L�1U2M�2M �I2M�2M

0M�M � � � 0M�2M 0M�2M LUM�2M
1

0
BBBBBBB@

1
CCCCCCCA
.

Here, lU2M�Ml ðl ¼ 1; . . . ; L� 1Þ and LUM�2M
1 are evaluated at the upper (i.e., large major radius) end, wl,

of the respective region in the plasma.
There are two cases to consider. In the case when detYðcÞ ¼ 0 for a given growth rate c, the matrix Y is

not invertible and therefore Eq. (24) has no trivial solution. In this case, however, the equation
Y

1c

..

.

Lc

0
B@

1
CA ¼ 0; ð25Þ
has a nontrivial solution instead. This means that there exists a solution that is continuous in the plasma
(specified by the first L � 1 rows of Eq. (25)) and that satisfies nwmðwaÞ ¼ 0 for all m (specified by the last row
of Eq. (25)). Physically, this implies the existence of the internal mode.

In the case when detY 6¼ 0, one can solve Eq. (24) for lCMl�M . One can then construct a new set of M
independent solutions
U2M�M
p ðwÞ ¼ lU2M�Ml lCMl�M ; for wl�1 6 w 6 wl. ð26Þ

M�M
 !
Here, we have U2M�M
p �

Up1

UM�M
p2

¼ u1p; u
2
p; . . . ; u

M
p

n o
, for which each column represents an independent

solution of the set of Euler–Lagrange Eq. (11). This set of independent solutions is continuous in the plas-
ma (specified by the first L � 1 rows of Eq. (24)) and satisfies the boundary condition (specified by the last
row of Eq. (24))
UM�M
p1 ðwaÞ ¼ I. ð27Þ
The general solution (up) of the Euler–Lagrange equations in the plasma region can therefore be con-
structed in terms of this new set of independent solutions:
up ¼ U2M�M
p cp; ð28Þ
where cp is a constant vector, to be determined by the eigenvalue problem that results from the plasma–
vacuum matching.

In the second step of the matching procedure, we consider the matching at the plasma–vacuum interface.
Sincer � d~B ¼ 0, the normal component of the magnetic field d~B should be continuous across this interface.
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With the use of this condition, the cv in Eq. (22) can be related to cp in Eq. (28). This matching can be
shown to yield
Fig. 5
horizo
uv2ðwaÞ ¼ UM�M
v2 ðwaÞcv ¼ �i v0TKk

� �
w¼wa

cp. ð29Þ
Here, Eq. (27) has been used. Having different vacuum and plasma coordinate systems provides flexibility.
The transform matrix between the two poloidal coordinates (hv for vacuum) and (hp for plasma) is defined
as follows:
Tmvmp ¼
1

2p

Z p

�p
dhpe

�imvhveim
0
php .
When non-PEST coordinates (e.g., Hamada coordinates) are used in the plasma region, the theta-depen-
dent part of the generalized toroidal angle should also be included in this transformation. One can solve
Eq. (29) to obtain
cv ¼ �i v0U�1
v2 TKk

� �
w¼wa

cp. ð30Þ
. n = 1 modes computed by AEGIS in the configuration described in Fig. 1. The poloidal magnetic flux v is used as the
ntal coordinate and the Fourier components of nv ¼~n � rv as the vertical coordinate.
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Using cv one can obtain
uv1ðwaÞ ¼ Uv1ðwaÞcv ¼ �i Uv1U
�1
v2 TKk

� �
w¼wa

cp. ð31Þ
For simplicity, the superscript indicating the rank of the respective matrix will henceforth be dropped.
Inserting Eqs. (29) and (31) into the vacuum energy integral in Eq. (19) and inserting Eqs. (27) and (28) into

the potential and kinetic energies of the plasma in Eq. (12), one finds that the total system energy is reduced to
2l0 dW p þ dW k þ dW v

� �
¼ cyp Up2 � v0

2

KkT
yU�1y

v2 Uy
v1TKk

h i
w¼wa

cp. ð32Þ
This total energy can be further minimized with respect to cyp. Stability is then determined by the condition
of whether the minimized energy is positive or negative. To evaluate this condition, an artificial kinetic en-
ergy dWa = X2�dwc�c is introduced in the minimization, as is also done in the DCON and ELITE codes.
This yields the final eigenmode equation:
Up2 � v0
2

KkT
yU�1y

v2 Uy
v1TKk

h i
w¼wa

cp ¼ X2cp. ð33Þ
The solution of this equation constitutes a linear Hermitian eigenvalue problem. The sign of the eigenvalue
X2 indicates stability: If the eigenvalue is positive (X2 P 0), the system is stable; otherwise it is unstable.
From the eigenvector, the eigenmode in the plasma region can be determined from Eq. (28) and that in
the vacuum region from (22) (together with Eq. (30)). Note that the eigenvalue X2(k) is a function of the
actual growth rate c. The true eigenmode is the one that satisfies Eq. (33) with X2(k) = 0. The condition
X2(k) = 0 is a dispersion relation. A Nyquist diagram approach can be used to determine the unstable roots.
Since the system is Hermitian, there are only real values of X2(k). Therefore, examining the change in the
sign of X2(k) is sufficient to determine the stability of a system. When non-ideal MHD effects are taken into
account, the problem becomes non-Hermitian and a full Nyquist diagram analysis would be required.
Fig. 6. The same modes as Fig. 5 computed by GATO.
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4. Numerical results and benchmark studies

The numerical scheme described in the preceding section has been implemented in the AEGIS code with
Fortran 90/95 on the Seaborg IBM SP supercomputer at the National Energy Research Scientific Comput-
ing Center. Both NAG and IMSL mathematical libraries were employed in the coding. The results were
benchmarked with the GATO code, and good agreement was found in all respects, such as the stability beta
limit, the growth rate, the mode shape, the critical wall position, etc.

Figs. 5 and 6 compare the n = 1 modes computed by the AEGIS and GATO codes, respectively, for the
equilibrium described in Fig. 1. The n = 3 modes are compared in Figs. 7 and 8. Due to its adaptive nature,
the AEGIS code has better resolution than GATO at the mode resonance surfaces. The consequence is that
AEGIS can calculate MHD modes that have small growth rate. Using various equilibria, we found that the
growth rate for modes that can be computed with AEGIS can be one or two orders of magnitude smaller
than for modes computed with GATO.

In a non-adaptive code that calculates MHD modes, the grid density must be increased near the reso-
nance surfaces. Moreover, for modes with high mode numbers, there are many mode resonance surfaces.
The number of radial grid points, then, must be dramatically increased in order to attain the required res-
olution in the vicinity of the resonance surfaces. Consequently the size of the eigenmatrix in a non-adaptive
Fig. 7. n = 3 modes computed by AEGIS in the configuration described in Fig. 1.



Fig. 8. The same modes as Fig. 7 computed by GATO.
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code increases enormously (by a factor that is approximately given by the number of resonance surfaces
multiplied by the number of additional grid points needed for good resolution near resonance surfaces).
However, with the independent-solution shooting method in the AEGIS code, the matrix size increases only
by a factor given by the number of resonance surfaces [see Eq. (24)]. Thus, the AEGIS code can be used to
compute high-mode-number modes within a comfortably short computing time. The n = 10 modes com-
puted with AEGIS are shown in Fig. 9. This feature of the AEGIS code is inherited from a similar feature
in the ELITE code [13].
5. Conclusions and discussion

The development of the linear ideal-MHD adaptive shooting code AEGIS has been described. Its
numerical scheme can be summarized as follows. Fourier decomposition is used in the poloidal direction.
In the radial direction, the modes are decomposed into a linear combination of the complete set of inde-
pendent solutions of the Euler–Lagrange equations. The adaptive shooting method is used to obtain
these independent solutions. The shooting in the plasma region is divided into shootings in multiple sub-
regions, with the solutions in the subregions matched to each other. This procedure overcomes the
numerical difficulty associated with the stiff nature of the independent solutions near the singular surfaces
and the magnetic axis. A similar scheme is also used for the vacuum region. Shooting in the vacuum re-
gion is much simpler than that in the plasma region, since there are no resonance surfaces in the vacuum.
The eigenvalue equation is formulated by the matching of the plasma and vacuum solutions. AEGIS con-
tains a built-in interface with the numerical equilibrium, which is computed, for example, by the TOQ
code, after which regridding is performed and the numerical equilibrium is checked with the Glad-
Shafronov equation.



Fig. 9. n = 10 modes computed by AEGIS in the configuration described in Fig. 1.
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The AEGIS code has been benchmarked with the GATO code for various equilibria with different values
for the aspect ratio, elongation, triangularity, etc. The results for the stability beta limit, the growth rate, the
mode shape, the critical wall position, etc., were found to be in very good agreement. A comparison with
analytical results in the cylindrical geometry limit has been also performed and good agreement was again
obtained.

In contrast to non-adaptive codes such as PEST and GATO (as well as ELITE), the adaptive shooting
method in AEGIS provides higher resolution near the mode singular surfaces. This allows AEGIS to be
able to compute the MHD modes with growth rates that are one or two orders of magnitude smaller than
those for the MHD modes that can be computed with non-adaptive codes. The adaptive feature of AEGIS
is particularly useful for studying equilibria – such as equilibria with thin transport barriers or equilibria for
highly elongated tokamaks – for which it is difficult to achieve numerical convergence in grid codes.

Another advantage is that AEGIS can compute modes with both low and medium-to-high mode num-
bers. Let us compare AEGIS and ELITE for high-n mode computations. As the basic set of equations for
stability computation, AEGIS uses the full incompressible MHD equations, whereas ELITE uses the re-
duced MHD equations for the ballooning mode stream function in the high-n ordering. AEGIS is a full-
radius MHD code and can investigate both core and edge modes, whereas ELITE is used to study only
edge localized modes. In most studies of the stability of MHD modes in tokamaks, two-dimensional codes
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are used to study the low-mode-number modes (up to about n = 5), while an one-dimensional ballooning
code (together with the Mercier criterion) is used to assess the high-n modes in the core of the plasma and
the ELITE code can be used to investigate the high-n modes at the plasma edge. In contrast, with AEGIS
the modes with intermediate mode numbers, between n = 5 and n = 10, can be investigated as well. In stud-
ies of high-n modes, AEGIS can address the coupling between the core and edge high-n modes.

It is also of interest to compare AEGIS with DCON. Both DCON and AEGIS are based on decompos-
ing the general solution into a linear summation of the independent solutions of the Euler–Lagrange equa-
tions to facilitate the radially adaptive shooting. The difficulty of this approach lies in how to compute the
independent solutions accurately, since the large solutions of the Euler–Lagrange equations are overwhelm-
ingly dominant over the small solutions, especially near the singular surfaces and at the magnetic axis. A
brute force numerical shooting treatment fails in general to get the independent solutions over the entire
plasma region. The small solutions are often submerged in the numerical noise of the large solutions. To
overcome this difficulty, the DCON code uses the Gaussian elimination technique to remove the large solu-
tion, while the AEGIS code employs the piece-wise multiple-region shooting and matching technique to
obtain both the large and small solutions. The DCON code uses its numerical scheme to calculate
MHD marginal stability. By contrast, the AEGIS numerical scheme solves the finite-frequency problem.
An extrapolation is required with AEGIS to obtain the MHD marginal stability boundary. The ultimate
objective of the AEGIS code is to be able to treat rotational and kinetic effects; the generalization of the
code for this objective is currently under way. In order to treat the non-ideal MHD case, the role of finite
frequency or growth rate needs to be addressed. The AEGIS multiple-region-matching numerical scheme
can be extended directly to treat the non-ideal MHD case.
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